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Abstract

In the context of mechanism design, we model the utility functions of agents who value
their privacy. Our utility function is motivated by agents who do not want the mechanism
facilitator to know their private information but have strong incentives to participate in a
mechanism. This contrasts with previous research, which focused on constructing differentially
private mechanisms which do not leak agent’s information to the outside world, but still give
the mechanism facilitator access (or the appearance of access) to agent’s reports.

We analyze agent’s behavior under these utility functions in three ways. First, we charac-
terize optimal strategies for agents which balance their incentives to participate in a mechanism
against their privacy concerns. Second, we make some informal remarks on when these strate-
gies constitute Bayes-Nash Equilibria. Lastly, we show via simulations that under these utility
functions, differentially-private mechanisms incentivize agents to misreport more than non-
differentially private mechanisms, leading to net lower social utility. This phenomenon occurs
because individual reports are unlikely to change the output of differentially-private mecha-
nisms, meaning that players are incentivized to lie to preserve their privacy, since it will not
affect the outcome anyway.

1 Introduction

1.1 Motivation

A growing body of literature in mechanism design has acknowledged that agents often have prefer-
ences for privacy: in addition to preferring specific possible outcomes, agents may not want others
to know their private information.

Previous literature has largely focused on the case where a realized outcome reveals private in-
formation about agents (see [Chen et al., 2011], [Huang and Kannan, 2012], [Pai and Roth, 2013],
[Xiao, 2013], and [Sui and Boutilier, 2011]). Indeed, many standard mechanism design settings have
potential privacy losses, such as when private valuations for items/packages in an auction are re-
vealed through open(ed) bids. We refer to such individuals as weakly privacy-aware. Researchers
have designed various mechanisms which incentivize weakly privacy-aware agents to report (approx-
imately) truthfully to a mechanism, and then the mechanism outcome does not leak information
about any individual players to the outside world ([Huang and Kannan, 2012] and [Xiao, 2013] for
differentially private mechanisms).

However, in this class paper, we consider the case where individuals do not want the mechanism
facilitator to know their private information at all – we refer to such individuals as strongly
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privacy aware. For example, users answering a social media poll may not want Facebook to know
their private information, even if Facebook promises to only use differentially private algorithms
on the data (especially since users may not believe this promise). At the same time, users may
have a countervailing incentive to participate in the poll in order to affect the outcome of the
mechanism. To understand these tradeoffs, this class paper defines and analyzes a new model of
strongly privacy-aware utility functions.1

We are certainly not experts on the mechanism design/privacy literature, but to our limited knowl-
edge, very little previous research has analyzed this question.

1.2 Structure and Main Claims

This paper is one third survey paper and two thirds novel contribution. It focuses exclusively on
settings without payments (we have no good reason for this – we just ran out of time to analyze
payments). It is structured as follows:

• In section 2, we present a model of strongly privacy-aware utility functions. Unlike previous
work, this model applies in cases where the agent prefers that the mechanism facilitator does
not have access to their private information.

• In section 3, we present a brief and highly incomplete survey of differential privacy in mech-
anism design, both as a tool to create approximately-truthful mechanisms and to protect
information. For a more comprehensive survey, see [Pai and Roth, 2013].

• In section 4, we characterize optimal strategies for privacy-aware agents given priors on other
player’s reports, and offer some remarks on whether/when these strategies form Bayes-Nash
Equilibrium.

• In section 5, we simulate these deviations for the 1-dimensional facility location problem
(which we will define later), and demonstrate that in many settings differentially-private
mechanisms lead to both lower social utility and greater misreports.

• In section 6 (the conclusion), we acknowledge some limitations of our model/simulations and
discuss possible ways to remedy them.

2 Model and Problem Statement

In this section, we’ll (i) define some preliminary notation, (ii) state a model of agent’s utility which
incorporates their concerns about privacy, (iii) discuss why we think it’s a reasonable model, and
(iv) more precisely outline our goals for the rest of the class paper.

2.1 Preliminary Notation

Given a set of N agents labeled i ∈ {1, 2, . . . N}, we define the following notation:

• Let O be the set of outcomes (o ∈ O).

1To be clear, we are not conceptualizing this as an information elicitation problem, which certainly been analyzed
previously – we consider the case where agents face a genuine trade-off between caring about the outcome of a
mechanism and preserving their privacy.
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• Let V be the set of types, which we also assume to be the set of allowable reports. Let |V| = V .
Let the true type of player i be vi ∈ V. Let the report of a player (not necessarily truthful)
be v̂i ∈ V.

• Let ∆(V) be the set of strategies (s ∈ ∆(V)).

• Let v : O → R+ be a valuation function with vi that for agent i.

• Finally, for any strategy s = (s1, . . . , sV ) ∈ ∆(V), define the Shannon Entropy of s as

H(s) = −
V∑
i=1

si log(si)

As we’ll discuss later, the entropy of a distribution quantifies the amount of uncertainty or
“randomness” in the distribution. For example, a degenerate distribution (e.g. a constant
value) has entropy of log(1) = 0, and a perfectly uniform distribution over V values has
entropy − log(1/V ) = log(V ), representing the “maximal” uncertainty for any distribution
over V values.

To this end, we will often work with the “normalized” entropy H(s)/ log(V ), which ranges
between 0 and 1, with 1 corresponding to the maximal possible uncertainty (a discrete uniform
distribution).

• Lastly, it’s worth noting for the theory section that we can generalize the Shannon entropy
to be between two distributions to the cross entropy

H(s, s∗) = −
V∑
i=1

s∗i log(si)

and the KL divergence
KL(s||s∗) = H(s, s∗)−H(s)

It is also well known that the KL divergence is minimized (optimizing over s) when s = s∗.

2.2 Utility Function Model

We define u : O×∆(V)→ R+ be a modified utility function with ui that for agent i, which combines
outcome valuation with privacy valuation. We model strongly privacy-aware agents’ utilities as:

u(o, s) = v(o) + α · H(s)

log V

Note that for a fixed V , working with the normalized entropy makes no difference, since one could
scale α to cancel it out: we just think it makes some of the plots later a bit more interpretable.

Interpretation: For an outcome o and strategy s, the modified utility u(o, s) is the sum of the
value of the outcome v(o) (standard utility) and the normalized Shannon entropy of s. This utility
function will usually force players to make trade-offs between their valuation functions and their
privacy (e.g., a player who reports truthfully may favorably influence the outcome, but will reveal
lots of private information). We can think of the scale parameter α as a measure of the agents’
value for privacy: an agent who doesn’t value their privacy might have α ≈ 0, and an agent who
only cares about privacy might have a very large α.

Why might entropy be a good way to represent agent’s concerns about privacy? We picked entropy
for three reasons.

3



1. First, the entropy of a strategy quantifies an observer’s uncertainty about the initial player’s
type, even if they know the initial player’s report. This is in stark contrast to utility functions
proposed by [Xiao, 2013], [Chen et al., 2011], which only model information leaked by the
outcome of the mechanism, as opposed to the player’s report.

As a simple example, set V = 4 and consider two players with strategies s1 = (0.5, 0.5, 0, 0)
and s2 = (0.25, 0.25, 0.25, 0.25), which have normalized entropies of 0.5 and 1. Even if an
observer knew the players’ reports, as opposed to just the mechanism output, they could
only down player 1 and 2’s types to one of 2 and 4 types respectively, independent of the
mechanism. As a result, regardless of the mechanism, our model indicates that player 2 has
twice as much “privacy” as player 1.

2. Second, this utility function is a nice extension to the differential privacy literature. As
described in the background section, [Huang and Kannan, 2012] have shown that common
differentially private mechanisms optimize a weighted sum of social utility and the entropy
of the outputs of a mechanism. Our utility function represents a stronger notion of privacy,
since players balance their own valuation functions against the entropy of their reports.

3. Third, this utility function is easy to analyze - as we’ll see in section 4, it makes it tractable
to characterize best responses for players in very general settings.

There are certainly some limitations to this model, but we will discuss them in the conclusion.

2.3 Precise Problem Statement

Given the above model of strongly privacy-aware utility functions, we are interested in answering
the following three questions.

1. First, suppose player i has a prior πi ∈ ∆(V) on the distribution of other agent’s reports.
What is the strategy s∗i for player i which optimizes their expected privacy-aware utility, e.g.
which appropriately balances their valuation function against their privacy?

2. Second, can we find approximate Bayes-Nash Equilibria for these utility functions?

3. Third, we are interested in the social choice function

g : VN → O, g(v̂) = arg max
o∈O

N∑
i=1

v̂i(o)

Let M : VN → O be a (direct revelation) mechanism that selects an outcome o ∈ O for
reports (v̂1, . . . v̂N ) = v̂ ∈ V. v̂−i = (v̂1, . . . v̂i−1, v̂i+1, . . . v̂n) is standard.

We will define a “differentially private” mechanism in the next section; however, for now,
it’s enough to know that the outcomes of differentially private mechanisms depend only very
weakly on individual player’s reports. We hypothesize that weakly private (e.g. differentially
private) mechanisms incentivize privacy-aware players to lie, because their report is unlikely
to effect the outcome, so they choose to preserve their privacy given expected low cost to
lying.

We will give a theoretical treatment of question (1) and some remarks about (2) in section 4, and
we give some preliminary empirical evidence in section 5 that our hypothesis is correct (e.g., that
differentially private mechanisms may incentivize misreporting for privacy-concerned agents).

In the following section 3, we first give a brief survey of related work and introduce one mechanism
from the literature in detail.
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3 Differentially Private Mechanism Design

This class paper began as an exposition of literature in privacy and mechanism design, investigating
optimal strategies and efficiency concerns that arise when agents act to protect their privacy. This
section reflects this expositional goal, though the following work takes a different approach from
our model in that it frames the problem in terms of differential privacy, and is motivated by weakly
privacy-aware agents.

3.1 Differential Privacy

We use the framework of differential privacy mechanisms from survey [Pai and Roth, 2013] and we
use the same notation as introduced previously. Additionally, let R be the probability space from
which a mechanism takes its randomness, and let two types t, t′ ∈ VN be neighbors if there exists
an agent i such that t−i = t′−i; either t = t′ or the types are equal except for the type of agent i.

Definition 3.1 (ε-Differential Private Mechanism). A mechanism : V ×R → O is ε−differentially
private2 (0 < ε� 1) if for all neighboring types t, t′ ∈ VN and for all utility functions u : O → R+

Eo∼M(t)[u(o)] ≤ exp(ε)Eo∼M(t′)[u(o)]

Intuitively, this differential privacy guarantee implies that for any utility function the change of
a report can only have a small ≈ 1 + ε scaling effect on the expected utility of the outcome of
mechanism M.

Early work in this area aimed to use differential privacy as a tool for mechanism design. McSherry
and Talwar showed that an ε-differentially private mechanism is also 2ε-approximately dominant
strategy truthful, and they used this to build approximately dominant strategy truthful mechanisms
[McSherry et al., 2007]. This connection is intuitive by definition; differential privacy guarantees
that an individual input will have a small effect on the expected outcome, and so likewise mis-
reporting could only have small utility gains for an agent. Unfortunately, the advantage of this
mechanism property could be superficial, as there is then also little incentive to tell the truth; thus,
agents with preferences for privacy may just choose to misreport to preserve their privacy.

Another useful property of differentially private mechanisms is resistance to collusion. We can
extend the definition of a type’s neighbor to consider types t, t′ ∈ V with differences in k indices.
Then we have that Eo∼M(t)[v(o)] ≤ exp(kε)Eo∼M(t′)[v(o)]. So, k changes in a type only change
the expected outcome by ≈ 1 + kε for k � 1/ε. This property applies to coalitions of k agents and
gives us a mechanism that is resistant to collusion.

For any mechanism design setting that aims to maximize social welfare, [Huang and Kannan, 2012]
demonstrates that one particular mechanism – the exponential mechanism (the details of which we
do not discuss here) – can be instantiated as a truthful mechanism that also preserves differential
privacy.

3.2 Differentially Private Mechanisms

We describe a differentially private mechanism, which we will later simulate. There are many other
frameworks for differentially private mechanisms, which, given more time, we could also analyze.

2For our purposes this definition is most relevant, although it is not the standard definition for general differential
privacy; [Pai and Roth, 2013] say that the definition is “easily seen to be equivalent.”
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3.2.1 Discrete Facility Location, [Chen et al., 2011]

The discrete facility location problem takes agents’ location reports and chooses a location for a
facility. We only consider choosing one facility in the one dimensional case for simplicity/tractability.

With similar notation as to our model’s framework, let L be the set of locations with |L| = L and
label lj ∈ L for j ∈ {1, 2, . . . L}. For N agents i ∈ {1, 2, . . . N}, let ` ∈ LN be the true agents’

locations, let ˆ̀ ∈ LN be the agents’ reports, and let f ∈ L be the chosen facility location Loc(ˆ̀)
(mechanism Loc : LN → L). We assume that agents’ valuation functions are vi(`, f) = c− |f − `i|,
where c is some constant designed to ensure that vi(`, f) ≥ 0 for any ` and f . For this context, it is
well-established that the truthful and efficient mechanism for the discrete facility location problem
is to the select the median of the reports.3

We now introduce the privacy framework from [Chen et al., 2011], which sets up a differentially
private truthful mechanism for the discrete facility location problem. We frame truthfulness with
the notation for the discrete facility location problem for simplicity.

Definition 3.2 (Truthful Mechanism). For all players i ∈ {1, . . . N}, all locations ` ∈ LN and all

possible reports ˆ̀∈ LN (any ˆ̀′
−i ∈ LN−1 and ˆ̀

i ∈ L), Loc is truthful for player i if 4

vi(`, Loc(`i, ˆ̀′
−i)) ≥ vi(`, Loc(ˆ̀

i, ˆ̀′
−i))

An analogous definition exists for truthfulness in expectation for randomized mechanisms. Let
LocRand now be a randomized mechanism Loc : Ln × R → L (recall that R is the probability
space from which a mechanism would take its randomness).

Definition 3.3 (Truthful Mechanism in Expectation). For all players i ∈ {1, . . . N}, all locations

` ∈ LN and all possible reports ˆ̀ ∈ LN (any ˆ̀′
−i ∈ LN−1 and ˆ̀

i ∈ L), LocRand :N ×R → L is
truthful in expectation for player i if

E[vi(`, LocRand(`i, ˆ̀′
−i))] ≥ E[vi(`, LocRand(ˆ̀

i, ˆ̀′
−i))]

We say that LocRand is universally truthful if the inequality holds for all values r ∈ R.

[Chen et al., 2011] gives a framework and examples of differentially private, truthful mechanisms.
The following mechanisms is for the discrete facility location problem.

Mechanism. (Chen12 Mechanism).

Input: privacy parameter ε, reports ˆ̀∈ LN

1. First, take the frequencies of the reported types. [Chen et al., 2011] describe this as a his-
togram h = (h1, . . . hL) where hj is the frequency of reports of lj ∈ L.

2. Next, choose random noise r ∈ NL such that Pr[rj = k] is proportional to exp(−εk/2). (Each
component of r is independent).

3. Finally, consider the perturbed histogram h+ r, which is just the originally frequencies with
added noise.

3Note that some of the privacy concerns within the facility location problem extend beyond distance-based valua-
tions and median allocation. Consider the setting in which the facility is a hospital that would specialize in a specific
health concern. If an agent has this health concern, this agent would presumably have higher value for the facility
but may also have greater incentive to protect this health information.

4Note that this definition is different from a Nash equilibrium, which considers the incentives of a player given
that the other players use equilibrium strategies.
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Output: Median(h+ r), the median of the noisy histogram Practically, taking the median conssti-
tutes the following function:

Median(ˆ̀) = min
k∈[L]

k :

k∑
j=1

ˆ̀
j ≥

L∑
j=k+1

ˆ̀
j


Theorem 3.1 ([Chen et al., 2011]). The Chen12 mechanism is ε-differentially private.

The Chen12 mechanism is also universally truthful and individually rational for some constraints
on the privacy utility function and the outcome utility function ([Chen et al., 2011]). However, we
will show below that it is not truthful for strongly privacy-aware agents.

4 Theoretical Results

We begin with some notation. Suppose a player has true valuation function vi. Given a strategy
si ∈ ∆(V), define the expected value to agent i given i.i.d. reports v−i from the agent’s prior πi as

Fπi(vi, si) = Evi∼si
(
Ev−i∼πi [vi(M(v′i, v−i))]

)
Moreover, we abuse notation slightly and use v′i to refer to the degenerate strategy which always
reports v′i, so

Fπi(vi, v
′
i) = Ev−i∼πi [vi(M(v′i, v−i))]

Now we can characterize optimal deviations for players. Note that the proof technique used in
Theorem 4.1 is not novel (as [Huang and Kannan, 2012] have noted, it’s a well known result in
statistical physics), but we include it because it’s very important for this paper.

Theorem 4.1 (Optimal Strategies for Privacy Aware Agents). For a player with true valuation
vi, a prior πi on other player’s reports, and utility function u(o, s) = vi(o) +α ·H(s)/ log(V ) where
α > 0, define strategy s∗ ∈ ∆(V ) such that

s∗j ∝ exp

(
log(V ) · Fπi(vi, vj)

α

)
where s∗j corresponds to the probability of reporting vj. Then s∗ uniquely maximizes Player i’s
expected utility, e.g.

s∗ = arg max
s

Ev′i∼s
[
Ev−i∼πiu(M(v′i, v−i), s)

]
= arg max

s
Fπi(vi, s) +

α ·H(s)

log(V )

Note in particular that s∗ follows a Gibbs-like distribution.

Proof. First we know definitionally that

Ev′i∼s
[
Ev−i∼πiu(M(v′i, v−i), s)

]
=
∑
vj∈V

Fπi(vi, vj) · sj +
α

log(V )
·H(s)

Playing with the left term, we obtain

=
α

log(V )

∑
vj∈V

sj · log

(
exp

(
Fπi(vi, vj) ·

log(V )

α

))
+

α

log(V )
·H(s)
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This looks like the distribution s∗j without a normalizing constant, so we multiply and divide by

the normalizing constant inside the log. For ease of notation, define r∗j = exp
(
Fπi (vi,vj)·log(V )

α

)
to

be the unnormalized s∗j , so s∗j = r∗j /(
∑V
l=1 r

∗
l ). Then our expression becomes

=
α

log(V )

∑
vj∈V

[
sj · log

(
r∗j∑V
l=1 r

∗
l

)
+ sj log

(
V∑
l=1

r∗l

)]
+

α

log(V )
H(s)

Note first that r∗j /
∑V
l=1 r

∗
j = s∗j by definition, so we can substitute that in. Second, the new

normalizing term doesn’t depend on j, so we can pull it out of the sum (since
∑
vj∈V sj = 1 by

definition):

=
α

log V

∑
vj∈V

sj log
(
s∗j
)

+H(s)

+
α

log V
log

(
V∑
l=1

r∗l

)
Note however that the very first sum on the left equal to the negative cross entropy between s∗ and
s (we defined it a while back in section 2)! This yields

=
α

log(V )
(−H(s, s∗) +H(s)) +

α

log V
log

(
V∑
l=1

r∗l

)

and plugging in the definition of the KL divergence,

= − α

log(V )
KL(s||s∗) +

α

log(V )
log

(
V∑
l=1

r∗l

)

Note that we are interested in maximizing this quantity with respect to s. Since s does not appear
in the right hand term, this is equivalent to maximizing

− α

log(V )
KL(s||s∗)

which is equivalent to minimizing the KL divergence between s and s∗. The solution to this, as
noted in section 1, is to set s = s∗, and moreover, this solution is unique. Therefore s∗ uniquely
maximizes the expected utility of the player.

An immediate corollary is that for this class of utility functions, for any priors and bounded valu-
ation function, no mechanism without payments is exactly truthful for α > 0.

Corollary 4.1.1. Suppose player i has an arbitrary valuation function vi : O → R+ and utility
function u(o, s) = vi(o) + α/ log(V ) ·H(s) for α > 0. Suppose also that vi(o) ≤ M ∈ R for some
M . Then for any prior πi and any mechanism M, player i’s best response is not truthful.

Proof. Note that the best response s∗j as defined above satisfies

s∗j ∝ exp (Fπi(vi, vj) · log(V )/α) > 0

where the strict inequality holds because Fπi(vi, vj) must be bounded because vi is bounded, and
α > 0. This holds for all j, meaning that player i’s best strategy involves misreporting with some
positive probability.

This is a remarkably strong claim: many impossibility theorems (such as the Gibbard–Satterthwaite
(GS) theorem) state that for certain classes of mechanisms (e.g. nondictatorial onto mechanisms
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with more than three outputs), there are some situations where there are useful deviations for
players. In contrast, this corollary proves that in every situation, no matter their uncertainty/beliefs
about other player’s actions, (e.g. maybe πi is degenerate, maybe it is not), privacy-aware agents
should employ a randomized strategy.

Of course, as α approaches 0, this Gibbs distribution does rapidly approach a degenerate distribution
and may be approximately truthful.

Remark 1. Is This an Equilibrium? Suppose players 1, . . . , N have priors π1, . . . , πN , and
that they then create a set of strategies (s∗1, . . . , s

∗
N ) ∈ ∆(L)N .

It’s worth noting that the set of strategies do not form a Bayes-Nash equilibrium in the conventional
sense. If πi represents player i’s prior over the true locations of the other players, and player i
assumes that the other players are not being truthful, then s∗i will not usually be a best response,
because s∗i is only a best response when πi is the distribution of player i’s responses.

However, the strategies (s∗1, . . . , s
∗
N ) are optimal if the priors {πi} represent priors on other player’s

reports as opposed to their true locations. There’s a plausible argument that this makes more
sense than treating {πi} as priors on the true locations, since players also likely have significant
uncertainty about which strategies other agents will use; treating {πi} as priors on reports better
incorporates this uncertainty.

Remark 2. Finding Traditional BNEs. Despite the last remark, it would be interesting
to find traditional BNEs. One way to do this would be to find convenient priors π on the true
locations of other players satisfying the following property: define s∗(`j , π) ∈ ∆(L) ⊂ RL as the
best strategy for a player with true valuation vj and prior π ∈ ∆(L) ⊂ RL, and suppose that

L∑
j=1

πj · s∗(`j , π) = π

In other words, π is equal to a sum of the vectors s∗(`j , π) weighted by the components πj . If this
equality holds, then the strategies (s∗1, . . . , s

∗
N ) would form a conventional Bayes-Nash Equilibrium,

because even if another player creates optimal misreports for each particular valuation function/type
they could have, their marginal distribution of reports (averaged over their possible valuation
functions) would still be π.

Unfortunately, we found it rather difficult to find priors π satisfying this property, since s∗ has a
complex dependency with π. However, we suspect that in simple cases (e.g. where the mechanism
M is constrained to have some kind of symmetry), such priors exist, and often they are reasonable
(e.g. close to uniform).

Conjecture 4.1.1. For some classes of mechanisms, it is possible to find priors π on player’s true
locations such that s∗1, . . . , s

∗
N are a conventional BNE.

Remark 3. Empirical Note. In practice, in the simulations below, we find that

V∑
j=1

πj · s∗(vj , π) ≈ π

for a uniform π, meaning that the strategies s∗1, . . . , s
∗
N are an approximate BNE.

5 Comparison Simulations

We hypothesized initially that under this model of utility functions, differentially private algorithms
would lead to worse social outcomes, because they rely less on individual reports and therefore give
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weaker incentives to individuals to be truthful. In this section, we confirm this hypothesis for the
discrete facility location problem by running simulations comparing the vanilla median mechanism
to the Chen 12 mechanism described in section 3.2.1.

If you want to follow along/rerun experiments, all of our code is available at https://github.com/
amspector100/c136privacyproject, with instructions in the README.

5.1 Simulation Design

We simulate the 1-dimensional location facility problem as described in section 3.2.1. Given an
arbitrary location mechanism M, simulations are run as follows:

1. We start by picking L evenly spaced locations between −1 and 1.

2. We sample the true locations of N players independently (we take N to be small so players
have some influence on the output). Order the possible locations as l(1) < · · · < l(L). We add
some skew into this distribution, so for each player, the probability of having l(i) selected as
their true location is proportional to i3. We only do this once (we set the seed to 136 and
then hold these true locations constant for each Monte Carlo sample in the upcoming steps).

3. We assume each player has a uniform prior πi = (1/L, . . . , 1/L). Although this prior is not
technically correct (the actual location distribution is skewed), we think that’s fairly realistic:
if people’s priors always matched the true distribution, most statistical problems would be
pretty trivial. Using these players’ priors, we use Monte-Carlo sampling (incorporating the
mechanism M) to obtain precise estimates for Fπi(vi, vj) for each i and j.

4. For each player i, we find the optimal strategy s∗i ∈ ∆(L) by setting s∗ij ∝ exp
(

log(V )·Fπi (vi,vj)
α

)
,

as in Theorem 4.1.

5. Finally, we use Monte-Carlo sampling again to calculate the expected total social utility
(excluding utility from privacy), defined as follows:

V (M, π) = Ev̂i∼s∗i

[
N∑
i=1

vi(M(v̂))

]

In particular, we sample independently from these optimal strategies, apply the mechanism
M to obtain an output o, and calculate the average social utility 1

N

∑N
i=1 vi(o), and then

average over the samples.

By default, we set the ε parameter of the Chen 12 mechanism to be 0.1, L = 100, and α = 0.1,
although we’ll present plots varying each parameter. In steps 3 and 5, we use 100 Monte-Carlo
samples (and we report standard errors).

5.2 Results

As expected, we find that the differentially private Chen12 mechanism leads to substantially lower
social utility than the vanilla median mechanism. This is displayed in the figure below. Note
that as described above, the “utilities” are equal to a constant (2) minus the distance from the
selected mechanism to the player’s location and do not account for privacy. The maximum utility
is therefore 2 and the minimum utility is 2− |1−−1| = 0.
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As α gets higher and higher, note that player’s reporting distributions converge to uniform (as they
value their privacy more and more), and as a result, the median mechanism starts to look identical
to the Chen12 mechanism. Note that the effect disappears as the Chen12 becomes less differentially
private (and converges in probability to the median mechanism).

Although the efficiency loss of the Chen12 mechanism is to some extent inevitable (differential
privacy usually comes at an efficiency cost), we also find that players are less truthful under the
Chen12 mechanism, presumably because it relies less on individual player reports and therefore gives
players less of an incentive to report truthfully. One way to see this is that both on average and for
each player, the normalized entropy of the optimal strategy is higher in the Chen12 mechanism:
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6 Conclusion and Future Work

This paper has three main branches of analysis. First, we modelled the utility functions of strongly
privacy-aware agents concerned with reporting their private data regardless of differential privacy
guarantees on the outcome (which they care enough about to participate in the mechanism). Second,
we characterized optimal strategies for these agents in very general settings, and showed they follow
a Gibbs-like distribution. Third and finally, we showed that often these strategies are more random
(and therefore less truthful) when responding to differentially private mechanisms, because players’
inputs have a less direct effect on the outcome, so they have less incentive to report truthfully.

We discuss some limitations of our work below:

• First, it is unclear whether our utility model leads to fully realistic on the behalf of players.
For example, players who highly value their privacy may simply decide not to participate at
all. One way to remedy this might be allow a new strategy, called φ, which represents not
participating, and give this strategy a fixed utility.

• Second, in repeated games, strategies with high entropy may not preserve your privacy. For
example, if a player has type 3 of three possible types, the strategy (0.25, 0.25, 0.5) has higher
entropy than the strategy (0, 0.5, 0.5), but in a repeated game, only the latter strategy will
full conceal the player’s type. We would be interested in exploring Bayesian interpretations
of this.

• There are also many avenues of further exploration, which include: (i) characterizing mecha-
nisms and priors that give a BNE strategy (Conjecture 4.1.1) (ii) evaluating efficiency losses
on other differentially private mechanisms (iii) accounting for privacy alongside efficiency to
analyze privacy/efficiency tradeoffs.

Thanks again for a wonderful semester and for getting to page 12 of our class paper!
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