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Abstract

Early language literacy (ELL) interventions are known to improve educational outcomes on av-

erage [3]. However, policymakers facing budgetary trade-offs may wish to target interventions

towards teachers and students who will benefit the most. Unfortunately, current studies analyzing

heterogeneous treatment effects for ELL interventions lack rigor: they rely on heuristic cross-study

comparisons or ad-hoc subgroup analysis.

We apply sparse LASSO techniques to rigorously identify heterogeneous effects of a randomized

intervention in Miami [7]. We find that classrooms with lower support for language-learning gain more

from these interventions. Moreover, we design a budget-constrained individualized treatment rule

(ITR) for policymakers, and demonstrate that our ITR is more efficient than a competitor constructed

from the relevant literature [6]. Our main results are cluster-robust and do not rely on asymptotic

theory. This contributes to the literature by rigorously demonstrating that ELL interventions equalize

instructional quality among classrooms (139 words).

1 Introduction

1.1 Motivation

According to the National Assessment of Educational Progress, 37 percent of fourth graders cannot complete basic

reading requirements [14]. This has motivated a substantial amount of government spending on programs aimed at
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remedying poor reading ability starting in preschools, such as the Head Start preschool program that cost 6 billion

dollars annually [14]. Many of these programs acknowledge the fact that most childcare professionals lack formal

training and secondary education, and aim to improve student outcomes by training teachers to implement curriculums

which facilitate their student’s language and literacy development [5, 9, 12, 15]. We refer to these programs as early

language literacy interventions (ELL interventions).

Unfortunately, policymakers always face budgetary trade-offs, and may not have the resources to intervene in every

single school. Thankfully, researchers can help mitigate this issue by identifying groups of students and teachers who

stand to gain the most from ELL interventions, allowing policymakers to target interventions towards these groups and

maximize the positive impact of ELL programs.

Our paper aims to help policymakers identify these groups in two ways. Using data from a randomized-control trial

of ELL interventions in Miami-Dade, we will first analyze whether ELL interventions have heterogenous effects on

instructional quality and interpret the policy implications of these heterogenous effects. Second, we will use our findings

to design an individualized treatment rule (ITR) which helps policymakers appropriately target ELL interventions when

facing budget constraints.

1.2 Findings and Contributions to the Literature

This paper has two main findings. First and most importantly, we show that ELL interventions have stronger positive

effects on instructors who score poorly on baseline measures of instructional quality. We interpret this as strong evidence

that ELL interventions equalize instructional quality between classrooms. Second, we construct an individualized

treatment rule which, given a budget constraint, automatically prioritizes certain classrooms to receive treatment. We

demonstrate rigorously that for a given budget constraint, this treatment rule improves instructional quality more than

both a randomized treatment rule and a competitor treatment rule constructed based on a literature review. From this

we conclude that our estimates of heterogenous treatment effects (and the methodology behind it) can substantially

improve the efficiency of budget-constrainted ELL interventions.

Our paper offers both a substantive and a methodological contribution to the literature. Substantively, very little existing

literature has analyzed heterogeneous effects of ELL interventions on teacher behavior and instructional quality. In

contrast, most of the heterogenous research on ELL interventions analyzes the effect of reading interventions on student

test scores through meta-analysis [10, 1]. However, evaluating how interventions affect instructional quality is crucial to

understanding the success of interventions, since a teacher-training program which fails to change teacher behavior
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will almost certainly fail to improve student outcomes. Indeed, previous research in other contexts (often in high

schools) has found counterintuitive and even negative effects of teacher-training interventions, especially on veteran

teachers, who resent and resist top-down policy changes [17]. As a result, we think this question genuinely matters to

policymakers.

Note that one other paper that we know of does explicitly evaluate heterogenous effects of ELL interventions on

teachers. In particular, Layzer et al. in 2007 [9] analyze the same dataset that we use in this paper. Although they

largely focus on computing average treatment effects, they find that ELL interventions have slightly larger positive

impacts for Spanish-speaking teachers. Our result generalizes theirs, as we find that regardless of the underlying cause

for low performance, ELL interventions have an equalizing effect for these underperforming teachers. Our finding is

substantially more actionable for policymakers who want to improve teacher quality, as it implies they ought to target

all underperforming teachers, not just Spanish-speaking ones.

This paper’s second contribution is methodological. Most literature analyzing the heterogeneous outcomes of literacy

interventions is through meta-studies, and these rely on cross-study comparison of effect sizes [10, 1]. Unfortunately,

meta-analysis assumes a high level of comparability between studies of vastly different interventions. As a result,

perhaps unsurprisingly, such research has found contradictory results on whether ELL interventions equalize outcomes

between students or exacerbate inequality by helping higher-income students more [1, 19, 16].

All other studies of heterogenous treatment effects in this field, to our knowledge, rely on ad-hoc subset analyses, where

researchers split the data into two arbitrary groups and compare average treatment effects between the groups. While

this analysis is not always incorrect, researchers usually are unsure exactly which pre-treatment covariates influence

treatment effects, and therefore run many different subset analyses, leading to multiple testing problems. For example,

Layzer et al. present 22 different regressions and do not seem to correct for multiplicity [9].

In contrast, this paper specifically uses post-selective LASSO methods pioneered in [8] to select relevant covariates and

minimize the effect of multiplicity. Even though we do not a priori know which covariates interact with the treatment,

we are able to automatically detect these covariates and generate exact p-values and confidence intervals for a small set

of selected covariates (which are then robust to multiple testing). Additionally, our LASSO method can estimate the

treatment effect for each individual. This allows us to construct individualized treatment rules which are substantially

more efficient than individualized treatment rules based on coarser subgroup analyses, which only estimate the mean

treatment effect for different subgroups.
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2 Research Questions and Hypotheses

This paper answers three main research questions.

1. Do ELL interventions have highly heterogenous causal effects on teacher instructional quality?

2. If so, do ELL interventions equalize instructional quality across classrooms?

3. Can we design individualized treatment rules to make ELL interventions more efficient?

These research questions are slightly vague by design, since a priori we make no formal assumptions about which

covariates make a treatment more or less likely to be effective. Instead, we hope to automatically identify factors which

affect treatment efficacy in a principled, statistically rigorous fashion, as we will discuss in Section 4.

That said, we hypothesize initially that the answer to all of these questions is yes. In particular, we suspect that ELL

interventions do have differential effects on different teachers’ instruction quality, and that ELL interventions are more

effective for weaker teachers. Therefore, we expect that targeting ELL interventions to underperforming teachers should

improve efficiency.

3 Dataset and Context

In this section, we first offer a high level overview of the Project Upgrade experiment and justify our focus on

instructional quality as the outcome of interest.

3.1 Context and Experimental Design

In this paper, we analyze data from a two-year randomized control trial (RCT) called Project Upgrade which took place

in Miami-Dade, Florida between 2003 and 2009 [12]. Florida’s Early Learning Coalition commissioned Project Upgrade

due to concerns that some pre-school teachers lacked training, which hindered preschool-age children’s language

development, especially children receiving childcare subsidies. As a result, Project Upgrade tested a teacher-level

intervention intended to improve the quality of literacy-related instruction in pre-school classrooms serving lower-

income students. In particular, the intervention offered teachers 18 months of professional development opportunities

and additionally provided teachers with tools to assess children’s progress, as well as the materials and training necessary

to implement Florida sanctioned literacy development curriculum. 2

2Technically, Project Upgrade tested three separate treatments, but these three interventions were fairly similar: they included the

same professional development opportunities, provided the same literacy materials such as books and assessment tools, and had only
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Project Upgrade was completely-randomized at the (center) level, with n = 162 centers participating and a control group

of size n0 = 54. Note that the experiment provided the same physical classroom materials (e.g. books) to the control

group, but only the treatment group received instructional training. The designers also employed 18 randomization

blocks based on pre-treatment covariates to ensure covariate balance between the treatment and control groups: these

pre-treatment covariates included teacher education levels, student demographics, and more.

3.2 Response Variables

From 2003 to 2005, the study measured 2 types of outcomes. First, in 2005, the study recorded the scores of students

on standardized tests designed to measure language literacy. Second, in late 2004 and early 2005, researchers visited

teachers’ classrooms and rated the quality of instruction pertaining to literacy development using a methodology known

as OMLIT [2]. The OMLIT rates teachers along four relevant axes: “support for print knowledge" (e.g. alphabet

knowledge, sound-letter correspondence), “support for print motivation" (motivating children to read), “phonological

awareness" (e.g. breaking words apart into syllables), and “oral language" (giving children practice speaking in English).

In this paper, we focus on the second set of observations, the OMLIT observations from 2004, to estimate heterogenous

treatment effects on instructional quality. We focus on the OMLIT responses because students often switched between

classrooms within the same center (and therefore switched between teachers) between 2003 and 2005. Although this

does not pose a problem for estimating average treatment effects, since every classroom in each center is assigned to the

same treatment group, this makes it difficult to tease apart whether the treatment has differential impacts on different

teachers using student-level data. In contrast, the OMLIT observations (i) take place at the end of the school year in

2004, before any classroom switching takes places, and (ii) measure the direct impacts on teacher behavior, which is

more directly related to our hypothesis.

Although policymakers and researchers might reasonably wonder whether the OMLIT observations measure anything

useful, repeated analyses have shown that OMLIT scores are strongly related with student outcomes, and OMLIT

observations are well-established in the language literacy literature as a measure of instructional quality (see [2],

[20], [9]). Additionally, from a substantive perspective, OMLIT scores reward types of instruction which are fairly

uncontroversially beneficial, such as encouraging children to read and working with struggling students individually,

slightly different curricula. As a result, the initial survey authors grouped the three treatments and considered them as one “treated

group" to increase effective sample size: we will do this as well (see [9]).
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etc [12]. Finally, since many ELL interventions aim to improve student outcomes via improving instructional quality,

improving teacher performance on measures like the OMLIT is likely a pre-requisite to improving student outcomes.

Throughout the paper, we standardize all four OMLIT observations so the empirical mean and variance in the datasets

are respectively 0 and 1.

4 Statistical Methodology

4.1 Estimands of Interest

For each observation i, let Xi ∈ X be a vector of pre-treatment covariates, where X is the support of the covariates, and

let Yi(0),Yi(1) ∈ R be the potential outcomes of one of the OMLIT observation types. For each OMLIT observation, we

have two types of estimands. First, we seek the conditional average treatment effect (CATE), defined as

τ(x) = E[Yi(1)|Xi = x] − E[Yi(0)|Xi = x]

Second, we would also like to quantitatively analyze whether our model of heterogenous effects can benefit policymakers.

To do this, given an estimator τ̂(x) and “budget" p which represents the maximum proportion of individuals we may

give the treatment to, we will design an individualized treatment rule (ITR) f : X → {0, 1} where f (Xi) = 1 indicates

assigning unit i the treatment, and P( f (Xi) = 1) = p. To evaluate the efficacy of this treatment rule, we will estimate the

Population Average Prescriptive Effect (PAPE), introduced by [6], which compares the average outcome under an ITR

to a treatment rule which randomly assigns individuals the treatment with probability p. Formally, we denote

τ f = E[Yi( f (Xi) − pYi(1) − (1 − p)Yi(0)]

Additionally, we would like to compare our methods to those of the literature. Although to our knowledge no other

study has created an ITR based on ELL intervention data, we apply the results of [9], who analyze the dataset, to

formulate a budget-constrained competitor individual treatment rule g. Using this g, we calculate the Population

Average Prescriptive Effect Difference (PAPD), which intuitively measures the “efficacy gap" between f and g:

∆p( f , g) = τ f − τg

4.2 Causal Identification Assumptions

We now lay out and justify the assumptions we need to identify our parameters of interest.

Assumption 4.1 (No Interference). The outcome of each Yi(T ) does not depend on the treatment of the other centers.

6



A preprint - December 2019

This assumption is likely to hold for two reasons. First, randomization was clustered at the center level, and there are no

formal interactions between the centers [9]. Second, our treatment effect is measured over the course of a single school

year, so no individuals and teachers switched schools during this time (our dataset confirms this).

Assumption 4.2 (Random Sampling). For each of the n centers, we assume that Yi(0),Yi(1),Xi are independently

sampled from some overall population.

In this case, the “overall population" is the set of centers willing to participate in the study.

Assumption 4.3 (Nondegeneracy). For each i, 0 < P(Ti = 1|Yi(1),Yi(0),Xi) < 1

This experiment was completely randomized and satisfies this assumption by design.

Assumption 4.4 (Unconfoundedness). For each i, Ti y {Yi(0),Yi(1)}

Since this is a randomized control experiment, this assumption should hold by design. However, we check the pre-

treatment covariate balance just in case, and find that they are balanced well (see Figure 1–note the percentage of

Spanish speaking teachers is normalized). Note that no centers dropped out of the study upon receiving their treatment,

and only 2 centers dropped out over the course of the first year, so attrition poses no threat to this assumption either.

Figure 1: Pre-Treatment Covariate Balance in Project Upgrade, Select Covariates

Under these assumptions, both the PAPE and the CATE are estimable (see [7, 6]).
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4.3 Estimation and Inference Strategy, Part 1: Variable Selection and Post-Selective Inference

Our first goal is to estimate τ(x) = E[Yi(1)|Xi = x]−E[Yi(0)|Xi = x]. We first construction interaction terms Zi j = Ti ·Zi j

for each i and j, and then model Yi as linear function of the covariates plus the interaction terms:

Yi = µ + βT Zi + γT Xi + εi (1)

where εi is i.i.d. random noise with mean 0. Note that εi need not be Gaussian for these parameters to be well defined:

we will still be able to conduct valid inference even if the model is mispecified.

This may be difficult to estimate in general, since x may be very high dimensional and we are agnostic a priori as to

which variables may have a nonzero interaction with the treatment. For example, in our application, Xi contains nearly

50 different covariates, including pre-treatment response levels, demographic information, and more. These covariates

are also highly correlated, and thus for our sample size (n = 160), running a linear regression with 50 covariates plus 50

interaction terms will likely yield strange results.

Instead, we will perform model selection, largely following the approach of Imai and Ratkovic 2013 [7]. In particular,

we will identify a sparse subset of covariates X̃i ⊂ Xi using the data, and then set the coefficients outside of this selected

set are uniformly zero (this follows the approach of [7, 11]). Under this selected model, we will then be able to estimate

τ(x) using a lower-dimensional model:

τ(x) = τ(x̃) = E[Yi(1)|X̃i = x̃i] − E[Y(0)|X̃i = x̃i]

We rely on the LASSO regression pioneered in [21], which estimates β̂ and γ̂ by minimizing the penalized likelihood

function:

β̂, γ̂ = arg min
β,γ

L(β, γ; X,Y) = arg min
β.γ

n∑
i=1

(Yi − Ŷi)2 + λ1

p∑
j=1

|β j| + λ2

p∑
j=1

|γ j|

The l1 penalizations ensure a sparse solution where some coefficients β j and γ j are “shrunk" to zero. We pick values

for λ1 and λ2 via a grid search and cross validation on the mean squared error. In particular, for each possible value

of λ1 and λ2 in a grid of 64 values, we employ 5-fold cross validation to estimate out-of-sample mean-squared-error∑
(Yi − Ŷi)2 for the resulting LASSO model, and pick the λ values with the lowest mean-squared-error. This is similar

but not identical to the approach of [7], who use an L2-SVM and a different cross-validation statistic. We use the

statsmodels package and Sklearn packages [4, 18].

Once we have successfully tuned our hyperparameters λ1 and λ2, the lasso estimates β̂ and γ̂ define an “active set" of

selected variables B = { j : β̂ j , 0} and G = { j : γ̂ j , 0}. Having selected a sparse set of coefficients, we next regress Yi

on Zi,B, Xi,G using ordinary linear regression to obtain post-selective coefficients β̂S and γ̂S .

8



A preprint - December 2019

We would like to now perform two types of inference. First, we would like to obtain valid confidence intervals for each

component of β̂S and γ̂S , which can be viewed as “interpretable" components of our CATE τ(x). Since we have used

the data twice, first to select a model and then to fit β̂S and γ̂S , we apply post-selective inference adjustments pioneered

in [8, 13] to obtain exact confidence intervals and p-values for β̂S and γ̂S . These adjustments are fairly complex and

beyond the scope of this paper, so we refer the interested reader to the aforementioned papers. We employ the selective

inference package in Python for computation.

Second, for any particular x ∈ X, we would like to obain point and interval estimates τ(x), the CATE. Under the

assumed model, τ(x) = βT
S XB,i, so we may consistently estimate τ̂(x) = β̂T

S XB,i. We employ the bootstrap to obtain

standard errors for τ̂(x) which are asymptotically correct under the assumption that the model is correctly specified.

To summarize, our estimation strategy is as follows. First, we employ 5-fold cross validation across a grid of

regularization values for the LASSO, and pick the regularization values which minimize MSE. Second, we fit the

LASSO using these optimal regularization values to select variables B,G. Third, we fit the selected model using

ordinary linear regression to obtain coefficients β̂S , γ̂S , and apply post-selective techniques developed in [8, 13] to

obtain exact confidence intervals for β̂S and γ̂S . Finally, for any x, we may calculate point and uncertainty estimates for

τ̂(x) = β̂T
S x by bootstrapping.

4.4 Estimation Strategy, Part 2: Individualized Treatment Rules

Next, we design a budget-constrained individualized treatment rule f : X → {0, 1}. As observed in [6], if a policymaker

can treat at most p percent of the population, a natural treatment rule given a CATE estimate is

f (Xi) = I(τ̂(Xi) > cp) where cp = inf{c ∈ R : P(τ̂(Xi) > c) ≤ p}

where in practice we estimate ĉp using the empirical quantile of the observed data. A policymaker might naturally be

interested in quantifying how effective this ITR is: to answer this question, we compare f to two alternatives.

First, we compare f to an alternative which randomly assigns treatments to the same proportion p of the population, in

particular by estimating the PAPE, defined as τ f = E[Yi( f (Xi) − pYi(1) − (1 − p)Yi(0)]. In [6], Imai and Li showed

τ̂ f (ĉp) =
n

n − 1

 1
n1

n∑
i=1

YiTi f (Xi) +
1
n0

n∑
i=1

Yi(1 − Ti)(1 − f (Xi)) −
p
n1

n∑
i=1

YiTi −
1 − p

n0

n∑
i=1

Yi(1 − Ti)


is approximately-unbiased and derived an estimate for its variance.3 The bias and variance expressions are fairly

complicated so we refer the reader to [6].
3Note that calculating their probability bound on the bias assumes Lischpitz-continuity of the CATE, which holds under our

linear model, and is a fairly common assumption (see [22]).
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Second, we would like to compare our model of heterogenous effects to those of the literature. Although to our

knowledge no previous analyses of ELL interventions have constructed ITRs, we construct an individualized treatment

rule g : X → {0, 1} based on the limited heterogenous analysis done by Layzer et. al [9], who analyze the same

Project Upgrade dataset. Layzer et al. perform (several) subset analyses and ultimately find that classrooms with

higher-proportions of Spanish-speaking students benefit more from the intervention. As a result, given a budget p, the

treatment rule g selects the proportion p of classrooms with the highest proportion of Spanish-speaking students. We

can then estimate the PAPD as defined earlier using the following estimator, which was also proposed by [6]:

∆̂p( f , g) =
1
n

n∑
i=1

YiTi( f (Xi) + g(Xi)) +
1
n0

Yi(1 − Ti)(g(Xi) − f (Xi))

This estimator is approximately unbiased under the same assumptions as before. Although its variance is unidentifiable,

[6] develop a conservative estimate of the variance.

This method will yield biased results if we use the whole dataset to both formulate the treatment rule f and estimate

τ̂ f (ĉp) and ∆̂p( f , g), since the model will overfit the data. Thus, we split the data into two parts. First, we retrain our

model for τ̂ using only a randomly selected 60% of the data, and we use the last 40% of the data to estimate the PAPE.

It is worth noting that since we are splitting the data and the dataset is so small to begin with, we set our desired

significance level 10% prior to computing the PAPEs and PAPDs. (As we will see later, it turns out that many of the

p-values are below 5% anyway). We evaluate the PAPE with a budget constraint of p = 1/2.

We estimate the treatment effect and standard errors by re-implementing the PAPE function in the R experiment package

in python. Our code for all estimation and results is publicly available on GitHub. Although we do not have the right to

re-publish the dataset, the dataset can be downloaded at [12].

5 Results

5.1 Interaction Term Coefficients

Below we present the estimates and confidence intervals for the selected interaction terms (and some relevant covariates),

e.g. the estimates β̂S and γ̂S . Recall that we estimate these parameters 4 times, once for each OMLIT/response

measurement.

Interestingly, the LASSO selects strikingly similar covariates and interaction terms for all four response variables. In

all 4 cases, the LASSO model selects the baseline, pre-treatment version of the response both as a covariate and as

an interaction term, as well as the treatment variable itself. Moreover, with one exception (see the appendix), these

10
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2003_response 2003_response_interaction Treatment

print_knowledge 0.109 0.059 0.528*

literacy_resources 0.642** -0.443* -0.633

oral_language 0.350* -0.393* 0.596

print_motivation 0.377** -0.474* 0.599

Table 1: Significant Interaction and Covariate Terms. The table presents effect sizes for the significant variables detected by the

post-selective LASSO procedure for each OMLIT response variable measuring instructional quality. The row names indicate the

response variable as measured in 2004, one year after treatment (e.g. print knowledge measures one facet of instructional quality).

The columns correspond to effect sizes of the 2003 response as a covariate, as an interaction term, and the treatment. ** p < 0.01, * p

< 0.05

characterize all of the significant effects detected by the procedure. As a result, we report these effect sizes below in

Table 1. The model does select other features; however, they are not statistically significant.

The coefficients follow the same pattern for three out of the four responses: a higher baseline (2003) level of instructional

quality is positively associated with instructional quality in 2004, but the interaction term between baseline instructional

quality and post-treatment instructional quality is negative and significant. We interpret this as strong evidence that

the intervention is more effective for teachers who initially have lower instructional quality. Moreover, for these three

responses, only the interaction term is statistically significant, and the treatment indicator is statistically insignificant.

We take this as further evidence that treatment effects are highly heterogenous, and in particular, the equalizing effect of

ELL interventions constitutes the majority of the treatment effect.

Additionally, the effect sizes are fairly large: they hover around −0.4 for the interaction terms. To interpret them, note that

all variables are standardized. As an example, the effect for the interaction term for print motivation (−0.474) indicates

that a one standard deviation increase in a teacher’s baseline level of support for print motivation (e.g. encouraging

children to read more) decreases the causal effect of the treatment by 0.47 standard deviations. Admittedly, it’s tricky to

interpret what a “one standard deviation" increase in OMLIT scores means. For context, however, for all four OMLIT

measures, teachers with college degrees had baseline OMLIT measurements less than 0.3 standard deviations above

their high-school educated counterparts. Thus, informally, the interaction term between the treatment and the baseline

response level has a causal effect more negative than the positive association between a college-education and OMLIT

scores.

11
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PAPE lower upper SE pval PAPD lower upper SE pval

response

literacy_resources 0.299** 0.037 0.561 0.134 0.025 -0.292 -0.672 0.088 0.194 0.132

print_knowledge -0.189 -0.457 0.079 0.137 0.167 0.468** 0.094 0.843 0.191 0.014

Table 2: PAPE and PAPD Estimates. In this table, we present PAPE and PAPD estimates and uncertainty estimates for ITRs for

print knowledge and literacy resources. The PAPE estimates compare our ITRs to a randomized treatment rule, whereas the PAPD

estimates compare our ITRs to a language-based ITR we derive from the results of [9]. All ITRs have a budget constraint of p = 0.5.

* p < 0.1, ** p < 0.05, *** p < 0.001

We consider this to be the main positive result of the paper. The full table of selected variables, coefficient sizes,

confidence intervals, and more is available in appendix A.1 for each response.

5.2 PAPE and PAPD Estimation

Since we retrain the LASSO model for τ̂ on only 60% of the data and our dataset is so small to begin with, two of the

four models unfortunately fail to converge to anything useful (i.e. they do not select any interaction terms). In Table 2,

we report PAPE and PAPD results for two responses where the LASSO trained properly (literary resources and print

knowledge).

Two of the four PAPE/PAPD estimates are statistically significant: the PAPE estimate of 0.3 for the literacy resources

response is significant and positive, as is the PAPD estimate for print knowledge of 0.47. We can interpret these

quantities as reporting, respectively, that the ITRs derived from the LASSO model improve instructional quality by 0.3

and 0.47 standard deviations with regard to literacy resources and print knowledge when compared to a randomized or

language-based treatment rule. Again, these effect sizes are fairly large: in both cases, the effect size of the PAPE/PAPD

is larger than the mean difference in instructional quality between college and non-college educated teachers. The

PAPD/PAPE estimates overall provide some evidence that our ITR would allow policymakers to more efficiently target

ELL interventions.

The other two of the four PAPE/PAPD estimates are negative, but they are statistically insignificant. That said, we admit

that holistically that the results from this section look a bit noisy, and as such we regard this set of results as weaker

evidence of heterogenous treatment effects than the previous section. However, the noiseiness of these estimates ought

to be unsurprising, since unlike the previous section, this analysis required sample-splitting.
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In 3b we present a visualization of τ̂. The graph shows the estimated treatment effects for all centers (note that

PAPE/PAPD estimates are only calculated with a subset of the data, but it is useful to visualize all the centers). In 3a

we see that for the 3 of 4 OMLIT measures with statistically significant interactions terms (literacy resources, oral

language, and print motivation), the estimated treatment effect is highly negatively correlated with the baseline OMLIT

score from 2003. This indicates that our τ̂ also predicts the equalizing effect of interventions that we found in our

previous regression. Although this does not robustly prove anything, it is in agreement with our other findings.

6 Robustness and Model Misspecification

Since the Project Upgrade experiment was randomized, the identification assumptions are highly plausible, as discussed

in Section 4.2. As a result, we discuss and evaluate the plausibility of the model defined in equation (1) in Section 4.4.

We discuss broader (non-methodological) limitations of our findings in the conclusion.

Recall that we model the OMLIT teacher instructional quality measures as follows:

Yi = µ + βT Zi + γT Xi + εi (2)

where Zi are interaction terms, and Xi is a list of about 40 pre-treatment covariates. We perform selective inference

based on this model to obtain sparse coefficients β̂S and γ̂S and corresponding uncertainty estimates.

What could go wrong in this estimation procedure? First, it’s possible that the errors εi are not Gaussian. Technically,

model inference will still be valid in this case, since the coefficients β̂ and γ̂ will converge to the best linear unbiased

predictors by the Gauss-Markov Theorem. However, these parameters are certainly more interpretable in the Gaussian

case, so we validate in 2a (see appendix) that the model residuals follow an approximately Gaussian distribution.

Second, since the post-selective approach assumes homoscedasticity, our p-values are not heteroskedacicity robust.

However, by grouping the data by the quantiles of baseline level of the response and calculating the standard deviations

of the residuals, we demonstrate in 2b that the homoscedasticity assumption holds fairly well in our dataset.

7 Conclusions

Overall we find that the ELL intervention has an equalizing effect on teacher effectiveness. The cross-validated LASSO

approach selects 2003 baseline OMLIT scores, treatment, and the interaction between 2003 baseline and treatment for

all four outcome measures of teacher effectiveness. While the 2003 baseline scores are positively associated with 2004

scores, the interaction between the 2003 baseline OMLIT score and treatment has a statistically significant effect on 3
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of the 4 measured OMLIT outcomes (literacy resources, oral language, and print motivation) of about −0.4. These

imply the main result of the paper, which is that a teacher with a higher baseline OMLIT score experiences a weaker

effect from the intervention. Overall, ELL interventions have an equalizing effect on teacher quality. This is a positive

result for policymakers utilizing ELL interventions as a method of closing the gap.

Our analysis is subject to at least two major limitations.

First, our analysis focuses exclusively on the OMLIT measure of instructional quality, as opposed to student test

scores. Although this makes sense methodologically (see Section 3.2), the ultimate goal of ELL interventions is to

improve student test scores, even if they accomplish this by measuring and improving teacher quality. Thus, it would be

worthwhile to extend this analysis to carefully analyze student-level data as a response.

Second, although our methodology is reasonable, we think the individualized treatment rule we constructed can be

substantially improved upon. We did find that our ITR is more efficient than competitor rules, and this result was

statistically significant. However, we acknowledge that this finding looks noisy and is less persuasive than our primary

result, probably because our methodology requires data-splitting, and our dataset is extremely small to begin with

(n = 162). Thus, we suspect that future research which constructs ITRs based on larger datasets will design substantially

better treatment rules.
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8 Appendix

8.1 Appendix A.1: All Coefficients and Post-Selective Confidence Intervals

Note that the confidence intervals do not seem to match the standard deviation because conditional on the selection event,

the correct confidence intervals are no longer symmetric (see [8]). All point estimates (effect sizes) are standardized.

For continuous covariate, for example, an effect size of 0.5 would mean that a 1 standard deviation increase in the

covariate is associated with a 0.5 standard deviation increase in the outcome. (This association is causal if applied to a

treatment/interaction term.)

8.2 Appendix A.2: Residual Analysis
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Table 3: Literacy Resources Response Coefficients (Post-Selective)

Variable pval point lower upper sd

Teacher Edu (Some College) (interaction) 0.416 0.827 -1.229 1.611 0.412

Teacher Edu (Some College) (interaction) 0.293 1.019 -0.998 1.876 0.448

Teacher Edu (College) (interaction) 0.537 0.675 -1.396 1.411 0.390

Treatment 0.495 -0.633 -3.515 1.678 0.387

2003_literacy_resources 0.001 0.642 0.331 0.936 0.124

intercept 0.262 0.028 -0.319 3.120 0.142

interaction_2003_Arnett_PosPunDet 0.983 0.054 -0.477 0.254 0.105

Pct Spanish Speaking (interaction) 0.808 0.064 -0.349 0.343 0.109

interaction_2003_literacy_resources 0.023 -0.443 -0.771 -0.071 0.167

Table 4: Oral Language Response Coefficients (Post-Selective)

Variable pval point lower upper sd

Teacher Edu (Some College) (interaction) 0.460 0.177 -11.608 2.751 0.318

Teacher Edu (College) 0.827 -0.111 -2.158 3.406 0.183

Treatment 0.810 0.596 -2.328 2.024 0.178

2003_Arnett_PosPunDet 0.117 0.235 -17.954 0.225 0.148

Pct Spanish Speaking 0.798 -0.047 -0.979 0.702 0.086

2003_oral_language 0.020 0.350 0.112 4.228 0.145

intercept 0.790 -0.337 -0.901 1.196 0.181

interaction_2003_Arnett_PosPunDet 0.072 -0.155 -0.119 26.354 0.179

interaction_2003_oral_language 0.028 -0.393 -5.409 -0.094 0.175
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Table 5: Print Motivation Coefficients (Post-Selective)

Variable pval point lower upper sd

Teacher Edu (Some College) (interaction) 0.751 0.085 -1.599 2.594 0.311

Teacher Edu (Some College) (interaction) 0.517 -0.247 -1.142 5.486 0.361

Teacher Edu (College) 0.972 -0.243 -1.031 1.711 0.227

Treatment 0.328 0.599 -0.656 1.134 0.196

2003_print_motivation 0.007 0.377 0.116 0.618 0.123

intercept 0.400 -0.255 -1.485 0.524 0.198

interaction_2003_Arnett_PosPunDet 0.500 0.119 -0.242 0.345 0.100

Pct Spanish Speaking (interaction) 0.387 0.021 -1.659 0.251 0.105

interaction_2003_print_motivation 0.011 -0.474 -0.794 -0.123 0.163

Table 6: Print Knowledge Coefficients (Post-Selective)

Variable pval point lower upper sd

Teacher Edu (Some College) 0.114 -0.166 -0.282 19.320 0.241

Treatment 0.044 0.528 0.016 0.860 0.170

Pct Spanish Speaking 0.904 -0.151 -1.039 1.110 0.087

2003_print_knowledge 0.231 0.109 -0.343 3.209 0.141

intercept 0.022 -0.386 -2.821 -0.095 0.145

interaction_2003_Arnett_PosPunDet 0.862 0.193 -0.861 0.676 0.103

interaction_2003_print_knowledge 0.287 0.059 -4.715 0.457 0.173
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(a) A subfigure (b) A subfigure

Figure 2: Residual Analysis: Figure 2a plots the distribution of the residuals for each fitted model of τ̂(x) to demonstrate they

are approximately Gaussian. Figure 2b plots the empirical standard deviations of the residuals, grouped by the quintile of the

pre-treatment baseline response level. These standard deviations are approximately equal, indicating that the homoskedacicity

assumption is plausible.

(a) Estimated Treatment Effects versus Baseline OMLIT
(b) Estimated Treatment Effects

Figure 3: Visulaizing the ITR: Figure 2a plots the estimated treatment effect against the baseline OMLIT score from 2003. Figure

2b plots the estimated treatment effects τ̂(x) of every center in the dataset. Note that in calculating PAPE and PAPD, we only use

60% of the data to fit τ̂, but for visualization purposes we graph all the centers.
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