
Preventing Index Collapse in Discrete VAEs for Sentences

Asher Spector Jason Ren Tristan Yang

Abstract
We introduce a discrete latent variable model
for sentence generation based on the Vector-
Quantized Variational Autoencoder (VQ-VAE)
introduced in Oord et al. (2017). To prevent the
problem of index collapse, where usage of the
discrete latents is limited to only a small number
of values, we propose a modification to the VQ-
VAE training scheme based on K-Means clus-
tering. Empirically, we achieve superior perfor-
mance in both index collapse, reconstruction per-
plexity, and language modeling perplexity com-
pared to the training methods used in Oord et al.
(2017) and Kaiser et al. (2018). Though we
demonstrate the viability of discrete latent vari-
ables for text, we are unable to fully replicate the
performance of continuous VAE’s on sentences,
which we hypothesize relates to the degeneracy
of the variational family used by VQ-VAE.

1. Introduction
Language modeling, defined as learning the joint distribu-
tion of words in sentences, lies at the core of many NLP
related tasks. Recent research, including most notably De-
vlin et al. (2018) and (Radford, 2018), has demonstrated
that language models trained on enormous corpora of text
can be fine-tuned to reach state of the art performance in
almost every domain of NLP.

However, these huge language models lack interpretabil-
ity, and informally, it is often difficult to tell whether these
models have simply learned the biases in their training
datasets. Moreover, many authors such as (Hu et al., 2017)
have demonstrated interest in finder control over the types
of text generated by language models. As a result, there
has increased interest recently on latent variable language
models, i.e. models which specify some relationship be-
tween the observed words in natural language and underly-
ing “latent variables” which may control their distribution.
(Among others, see Bowman et al. (2016), Hu et al. (2017),
He et al. (2019)).

We propose using discrete latent variables to model text for
two reasons. Firstly, we believe that the nature of language

is inherently discrete; i.e. latent features such as tense or
negation are discrete properties. Secondly, our model and
training procedure avoids the issues of index collapse and
posterior collapse, which occur when the latent variables
are ignored in generation.

Although there has been previous work on avoiding in-
dex collapse for discrete latent variables, we find they
do not perform as well as possible, especially for high-
dimensional latent spaces. Our main contribution in this
work is to show that our novel training scheme, which re-
lies heavily on K-Means clustering updates, fully solves the
issue of index collapse.

2. Background
2.1. Language Models

Most recent language models are autoregressive. If x =
x1...L denotes a sentence of L words, this means that the
likelihood is factorized as follows:

p(x) =

L∏
i=1

p(xi|x1...i−1)

Language models are traditionally evaluated by the per-
plexity metric, which is the exponential of the negative log
likelihood of the text under the model.

There is a plethora of language modeling data available, at
least in English; we use the standard relatively small Penn
Treebank dataset (Marcus et al., 1993).

2.2. Variational Autoencoders

We focus on the variational autoencoder (VAE) as the main
type of latent variable model discussed here. A VAE con-
sists of two main components. First, VAEs consist of a
generative model which predicts the likelihood of observed
words x in a sentence given some latent variables z, p(x|z).
However, inferring the likelihood p(x) using only this gen-
erative model requires summing over the entire possible la-
tent space:

p(x) = Ez∼p(z)p(x|z)

This sum or integral is usually intractable, and this in-
tractability constitutes the main difficulty of training latent
variable models. As a result, most latent variable models

Preventing Index Collapse in Discrete VAEs for Sentences

instead optimize the variational lower bound or the ELBO:

log p(x) ≥ Ez∼q(z|x)[log p(x|z)] +DKL(q(z|x)‖p(z))

for any arbitrary variational distribution q. The differ-
ence between the likelihood and the ELBO is minimized
when the KL divergence is minimized between the pos-
terior p(z|x) and the variational distribution q(z|x). This
motivates the second component of the VAE, the learned
inference network, which predicts the parameters of a dis-
tribution q(z|x) as a deterministic function of the observa-
tions x.

Training discrete VAEs yields another problem, however,
which is that if the z’s are discrete, then the predictions of
the inference network may not be differentiable with re-
spect to its parameters. We discuss this problem further in
future sections.

2.3. Posterior Collapse and Index Collapse

In a variational autoencoder, posterior collapse occurs
when the variational distribution q(z|x) is exactly equal to
the prior p(z), which minimizes the KL term in the ELBO.
However, in this case the input distribution of z used to cal-
culate p(x|z) during training is independent of x, and thus
the VAE does not learn to use the z to predict x. How-
ever, this still may achieve good performance if p(x|z) is
parameterized by a powerful neural network, which is often
occurs; in our case this reduces to a normal non-variational
language model.

Index collapse is a problem with discrete latent variables
that occurs when q(z|x) is supported only on a single small
subset of the discrete latent space across all x. In this case,
the discrete VAE only learns to use a small portion of the
latents to compute p(x|z), and most of the latent space is
meaningless. This can also be reflected in the prior if it is
learned (see section 5.1).

3. Related Work
3.1. Continuous Sentence VAE

There has been some recent work on continuous variational
autoencoders. Initially, Bowman et al. (2016) showed that
continuous VAEs approach the performance of simple lan-
guage models for small datasets like the Penn Treebank.
They trained their VAE using the ELBO objective, and their
main innovation was to anneal the KL term in the ELBO
slowly over time as to prevent the model from initially min-
imizing the KL term, thus preventing posterior collapse.

He et al. (2019) showed that aggressively training the in-
ference network in a VAE also helps address the problem
of posterior collapse, since with a better inference network,
the decoder is less likely to get stuck in a local minimum

during training where it ignores the inference network’s
outputs.

Although He et al. (2019) achieve better results, our work
is most easily compared to Bowman et al. (2016), since we
train on the same dataset (Penn Treebank) with extremely
similar architectures. We obtain worse overall bounds on
language modeling likelihood/perplexity than both (Bow-
man et al., 2016) and (He et al., 2019). However, this is to
be expected since training discrete latent variable models
is particularly challenging: we still think our training pro-
cedure represents an important incremental step in training
discrete latent variable models.

3.2. Discrete Latent Variable Models

There has been much research on training discrete la-
tent variable models. Most research tended to focus on
sampling-based methods to minimize the ELBO (see Mnih
& Gregor (2014), Mnih & Rezende (2016)), until Oord
et al. (2017) applied the technique of vector quantization
(VQ), which was the first technique that allowed discrete
VAEs to approach the performance of continuous ones in
certain domains, particularly vision.

Informally, VQ involves generating a set of continuous
latent variables and discretizing them by doing a nearest
neighbor search on a dictionary of discrete embeddings.
Although this search induces gradients which are zero al-
most everywhere, Oord et al. (2017) solved this problem by
using a straight-through gradient and tacking an extra term
onto the loss function to minimize the L2 norm between
the dictionary embeddings and inference network outputs.
VQ will be discussed in depth in Section 5.2.

VQ is quite effective. Oord et al. (2017) and Kaiser
et al. (2018) both show that it substantially outperforms
the Gumbel-Softmax sampling method introduced by (Jang
et al., 2017), which approximates the categorical distri-
bution with a continuous distribution with a temperature
constant that converges to the categorical distribution, al-
lowing the reparamtrization trick. Similarly, (Kaiser et al.,
2018) show that VQ also outperforms other discretization
techniques with straight-through gradients such as seman-
tic hashing. They also first identify the problem of index
collapse in VQ-VAE’s, and propose addressing this by de-
composing the encoder outputs and running VQ on each
decomposed chunk. They call this method decomposed
vector quantization (DVQ).

3.3. Discrete Latent Variables for Sentences

Despite the literature on continuous VAE’s for sentences,
there has been little work on discrete counterparts. Oord
et al. (2017) do not evaluate their original VQ-VAE on text
data. Kaiser et al. (2018) use VQ-VAE to train a “latent

Preventing Index Collapse in Discrete VAEs for Sentences

transformer” for the purpose of speeding up the transla-
tion decoding process, but do not evaluate the performance
of VQ-VAE as a language model. While Kaiser & Ben-
gio (2018) also applies a discrete autoencoder to text, they
do not use a variational autoencoder and thus their model
is not a true generative language model. Consequently,
they only report reconstruction perplexity. Our work is the
first to our knowledge to consider VQ-VAE as a generative
model for sentences.

4. Model
We model a sentence x = x1...L from dataset X as gen-
erated by a sequence z = z1...` of discrete latent variables
zj ∈ [K]. The latent sequence length ` is set to ` = dL/Ce
for some downsizing factor C.

The Variational Autoencoder introduces a variational dis-
tribution q(z|x) and minimizes the ELBO:

log p(x) ≥ Ez∼q(z|x)[log p(x|z)] +DKL(q(z|x)‖p(z)).

As in Oord et al. (2017), we restrict q(z|x) to be from the
family of degenerate distributions; i.e. distributions whose
support is a single element. Let z(x) = argmaxz q(z|x)
denote the latent corresponding to x. The ELBO then sim-
plifies to:

log p(x) ≥ log p(x|z(x)) + log p(z(x)) (4.1)

We note that this is equivalent to the inequality p(x) ≥
p(x, z(x)) which follows from the law of total probability,
and is also identical to the IWAE likelihood bound from
Burda et al. (2016) for degenerate q.

To evaluate (4.1), we factor the first term as

p(x|z(x)) =
L∏

i=1

p(xi|x<i, z
(x)) (4.2)

which we parameterize by an autoregressive generator net-
work. Rather than explicitly specify the prior in advance,
we also parameterize

p(z(x)) =
∏̀
j=1

p(z
(x)
j |z

(x)
<j) (4.3)

by an autoregressive network that represents a learned
prior, as is done in Oord et al. (2017).

5. Training Procedure
5.1. Overview

We focus on modifying the original VQ-VAE discretiza-
tion update scheme to address index collapse, while pre-
serving the rest of the VQ-VAE training procedure. Fol-
lowing Oord et al. (2017), we do not train the prior net-
work jointly with the rest of the model. Rather, we first

train the inference and generator networks to minimize the
ELBO bound according to a uniform prior, using gradient
descent and the discretization method of section 5.2. Under
this formulation, the KL-divergence term in (4.1) is con-
stant, and can be dropped from the loss. We then fix the
inference network and train the prior network to minimize
DKL(q(z|x)‖p(z)). According to the factorization (4.3),
this is equivalent to training a language model with vocab-
ulary in the latent space.

5.2. Discretization with K-Means Clustering

The VQ-VAE introduces a set of K latent embeddings
e1, . . . , eK ∈ Rd used to calculate both q(z|x) and p(x|z).
Specifically, the inference network maps

x1...L 7→ ẽ
(x)
1...` ∈ R`d

from which we define:

z
(x)
j = argmin

k
‖ẽ(x)j − ek‖2. (5.1)

The generator network takes as inputs the embeddings:

ez(x) = (e
z
(x)
1
, . . . , e

z
(x)
`

).

Because we cannot backpropogate through the argmin in
(5.1) to train the inference network parameters λ, we in-
stead use the “straight-through” gradient approximation:

∂L
∂λ
≈ ∂L
∂ez(x)

∂ẽ(x)

∂λ
. (5.2)

In order for this approximation to work well, we want to
train the embeddings ek to minimize the distances between
ẽ(x) and ez(x) . Oord et al. (2017) use gradient descent on
the L2 distance ‖sg(ẽ(x)j) − ek‖, where the stop-gradient
operator sg denotes treating the inference network outputs
ẽ(x) as fixed constants and only differentiating with respect
to the embeddings. Alternatively, Kaiser et al. (2018) and
Roy et al. (2018) set ek to be an exponential moving aver-
age of the inference network outputs assigned to it during
training. However, as noted in Roy et al. (2018), minimiz-
ing ‖ẽ(x)j − ek‖ across the dataset is equivalent to the k-
means clustering objective for cluster centers e1, . . . , eK
and data points{

ẽ
(x)
j : x1...L ∈ X, j ∈

[
dL/Ce

]}
.

We thus propose performing a full k-means clustering
run before each epoch to determine the embeddings
e1, · · · , eK . This allows us to leverage the convergence
guarantees provided by Lloyd’s algorithm and specific ini-
tializations such as K-Means++ or k-means‖ (Bahmani
et al., 2012). 1

1We also hypothesize that, given the importance of initializa-
tion in k-means clustering, re-initialization of the embeddings in

Preventing Index Collapse in Discrete VAEs for Sentences

Rather than compute the initial clusters from the outputs of
inference network at random initialization, we first treat the
inference and generator networks as the encoder/decoder
of a continuous, non-variational autoencoder and pretrain
them for a small number of epochs. Then, we compute ini-
tial clusters based on the outputs of the encoder and use this
to initialize VQ-VAE. Empirically, we find that this train-
ing scheme significantly reduces index collapse compared
to the Kaiser et al. (2018).

Finally, we follow Oord et al. (2017) in further forcing the
inference network outputs to be close to the cluster centers
by adding ‖sg(ẽ(x))− ez(x)‖2 to the gradient descent loss.

5.3. Recap

To recap, the overall training procedure is:

1. Pretrain the inference and generator networks as the
encoder and decoder of a continuous autoencoder, and
use this to initialize K-Means clusters.

2. Jointly optimize the inference and generator networks
using the VQ-VAE procedure on the modified ELBO
bound using a uniform prior and K-Means updates.

3. Run the inference network over the entire training
dataset to calculate the empirical z(x)’s

4. Train the autoregressive prior as a language model on
the empirical z(x)’s

6. Network Architectures
We consider only the case where C is a power of 2. The in-
ference network consists of log2 C layers, where each layer
is a bidirectional single-layer LSTM followed by a convo-
lution with stride 2. We use hidden size 512 for the LSTMs
and kernel size 7 for the convolutions. The last layer is a
linear layer that maps to the latent embedding size to pro-
duce ẽ(x).

To encourage usage of the latents, we use a weaker gener-
ator network. First we upsize ez(x) by using convolutions
of stride 1 that double the hidden dimension, which is then
reshaped to double the sequence length; these also use ker-
nel size 7. We then feed the upsized sequence into a single
layer (unidirectional) LSTM with hidden size 512. We fur-
ther encourage latent usage by randomly dropping out 10%
of the words fed into the LSTM, requiring it to only rely on
the latents in those cases, following (Bowman et al., 2016).

Finally, for the learned prior, we also use a single layer
LSTM with hidden size 512.

addition to computing Lloyd’s between epochs may slightly ben-
efit the clustering objective as the ẽ move during training.

7. Results
7.1. Experimental Overview

We test three discretization training procedures, with iden-
tical architectures for the inference network, generator net-
works, and the autoregressive prior. The first implements
the base VQ-VAE as described by Oord et al. (2017).
The second modifies discretization using the Decomposed
Vector-Quantization procedure described by Kaiser et al.
(2018), and updates the embeddings using the exponential-
moving-average procedure (EMA). We refer to these mod-
els as DVQ-EMA models. Lastly, our proposal uses vanilla
VQ-VAE in the discretization step, but additionally uses K-
Means to update the discrete embedding dictionary every
epoch. All procedures involve pretraining the inference and
generator networks without discretization for 1−2 epochs,
as we find it improves performance, but only the K-Means
method uses the continuous pretraining to initialize the em-
beddings.

For each of the three model classes, we report three types
of experimental results. First, during training, we moni-
tor the L2 norm between the discrete embeddings and the
encoder outputs, as a lower L2 norm will allow more ac-
curate straight through gradients. Second, we report the
final perplexities of the generative model (p(x|z)), the au-
toregressive prior (p(x|z)), as well as the overall bound on
the likelihood p(x). Lastly, we visualize and quantify the
use of the latents for all three model classes after they have
been fully trained.

We train on sentences from the Penn Treebank dataset, us-
ing a vocabulary size of 10, 000 and the default PyTorch
tokenizer.

7.2. L2 Norms

Below, we report the average L2 distance between the dis-
crete embedding over the entire training set, which we re-
call should be low to achieve accurate straight-through gra-
dients. We can see that the K-Means model significantly
outperforms the other procedures.

7.3. Perplexities

Below, we report the perplexities per sequence unit cor-
responding to both terms on the right hand side of (4.1),
which we call reconstruction perplexity, and “KL/Prior per-
plexity” (equal to exp(−DKL(q(z|x)‖p(z)))). Note that
this correpsonds to perplexity per word for reconstruction
perplexity, and the C’th power of perplexity per word for
KL/Prior perplexity. Finally, we report the total perplexity
of the language model under the calculation (7.1).

Large KL/Prior perplexity in Table 1 corresponds to a large
KL term in the ELBO, which indicates the lack of posterior

Preventing Index Collapse in Discrete VAEs for Sentences

Figure 1. Distance between Discrete Embeddings and Encoder
Outputs, K = 16 to 64

Training Method Reconstr. ppl. KL ppl. ppl.

Base VQVAE 63.9 18.7 276.3
EMA + DVQ 38.8 21.2 178.4
Full K-Means 20.0 72.1 169.7

Table 1. K = 256 (8 bits/word), C = 2

collapse (see section 8.1).

7.4. Index Collapse

We also directly examine index collapse by considering the
histogram: ∑

x∈X
q(z|x)

for the three training methods, as shown in figures 2 and 3.
Because the prior p(z) is fit to q, a histogram that is ≈ 0
for many values of z means that most of the latent space is
not used by the generative model.

8. Discussion
8.1. Index Collapse

Figures 2 and 3 make clear that even using the EMA pro-
cedure, discrete VAE’s trained using their procedure barely
use more than a few latents. Indeed, for K = 1000, training
with DVQ suffers from major index collapse while almost
all latents (even beyond top 100) are used a good amount
when training with our procedure. For K= 256, DVQ does
not suffer from index collapse as much, but we still see our
procedure do better in terms of using the latents. We note

that index collapse was so bad in the base VQVAE training
method that it made the visualization difficult. This is con-
sistent with (Kaiser et al., 2018)’s observation that index
collapse worsens with large K.

The initial loss presented by (Oord et al., 2017) helps ex-
plain why. Their loss, as briefly described in section 5.2, is
written as

L = log p(x|ez(x)) + ‖sg(ẽ(x))− ez(x)‖2

where the first term corresponds to the ELBO with a
straight-through gradient, and the second term penalizes
the distance between the encoder outputs and the dis-
cretized versions. However, note that under this loss, gradi-
ent updates only flow to discrete embeddings which are al-
ready the nearest neighbor of encoder outputs. As a result,
any embeddings which already are closest to many encoder
outputs get pulled even closer to those encoder outputs, and
the other embeddings receive no gradient. In other words,
under the vanilla VQ-VAE training procedure, the discrete
embeddings get stuck in a “local minimum” where only
one or two embeddings are used.

The K-Means update solves this problem precisely because
the coordinate ascent procedure in K-Means (with proper
initialization, as noted in (Bahmani et al., 2012)) is guar-
anteed to converge to within a constant factor of the global
optimum in expectation, which necessitates usage of all the
clusters. We see that the much lower L2 norms in figure
3 correspond to improvements in reconstruction perplexity
for our method in Table 1.

Furthermore, we note that the greater usage of index col-
lapse corresponds to a larger KL term in the ELBO given
the autoregressive prior p:

DKL(q(z|x)||p(z)) = p(z(x))

which is also an indicator of good latent usage and lack
of posterior collapse, as in (Bowman et al., 2016). (Here,
since we use a degenerate q distribution, the perplexity of
the autoregressive prior is equivalent to the exponentiated
KL term in the ELBO between the inference network’s pre-
dictions and the autoregressive prior.)

8.2. Language Modeling Perplexities

A higher KL term (autoregressive prior perplexity) is both
a good sign and a bad sign—it corresponds to higher la-
tent usage, which means that we have successfully trained
a true latent variable model, but it also detracts from the
final bound on the language modeling perplexity. Indeed,
despite a reconstruction perplexity of 20, the full K-Means
model only achieves a total perplexity of approximately
169 due to the KL term. We observe on experiments for
higher values of C that the reconstruction and the KL/Prior

Preventing Index Collapse in Discrete VAEs for Sentences

Figure 2. Latent Usage over 1 Epoch of Training, K=256

Figure 3. Latent Usage over 1 Epoch of Training, K=1000

perplexities increase. However, the contribution of the
KL/Prior perplexity to the final perplexity decreases due
to the C’th root compression factor noted in section 7.3.
One natural explanation for higher KL/Prior perplexity for
larger C may be greater independence between large sen-
tence chunks obtained during increased downsizing that led
to difficulty for training of the learned prior.

One direction for future work may be improving the in-
ference procedure while preserving the overall probabilis-
tic model and training procedure that we focused on for
this work. Specifically, we observed in some preliminary
tests that strengthening the bound in (4.1) by summing over
a few more z’s close to z(x) in hamming distance, while
using the same generator network trained with VQ-VAE,
significantly improved perplexity by up to ≈ 50 in some
settings, and it seems like sampling more z’s, as opposed
to sampling from the degenerate q, would further improve
performance. A related direction for exploration is usage
of richer variational family for q during both training and
inference.

9. Conclusion
We have introduced a new method of training discrete
VAEs that improves reconstruction perplexity, perplexity,
and greatly addresses the problem of index collapse. Al-
though this is a step in the right direction, there is still quite
a bit room to improve the final bounds on language mod-
eling perplexities. If we find ways to lower perplexity to
be competitive with continuous VAE variants or even non-
latent models, we conjecture the learned discrete embed-
dings from the discrete VAE will serve as useful represen-
tations in a variety of NLP problems including low resource
tasks, summarization, style transfer, and more.

10. Acknowledgements
We would like to give special thanks to Yoon Kim and
Alexander Rush for their guidance and comments on this
project. Thanks for a wonderful semester - we’ve learned
so much!

References
Bahmani, Bahman, Moseley, Benjamin, Vattani, Andrea,

Kumar, Ravi, and Vassilvitskii, Sergei. Scalable k-
means++. PVLDB, 5:622–633, 2012.

Bowman, Samuel R., Vilnis, Luke, Vinyals, Oriol, Dai, An-
drew M., Józefowicz, Rafal, and Bengio, Samy. Gen-
erating sentences from a continuous space. In CoNLL,
2016.

Burda, Yuri, Grosse, Roger B., and Salakhutdinov, Rus-

Preventing Index Collapse in Discrete VAEs for Sentences

lan R. Importance weighted autoencoders. CoRR,
abs/1509.00519, 2016.

Devlin, Jacob, Chang, Ming-Wei, Lee, Kenton, and
Toutanova, Kristina. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. CoRR,
abs/1810.04805, 2018.

He, Junxian, Spokoyny, Daniel, Neubig, Graham, and
Berg-Kirkpatrick, Taylor. Lagging inference net-
works and posterior collapse in variational autoencoders.
CoRR, abs/1901.05534, 2019.

Hu, Zhiting, Yang, Zichao, Liang, Xiaodan, Salakhutdinov,
Ruslan R., and Xing, Eric P. Toward controlled genera-
tion of text. In ICML, 2017.

Jang, Eric, Gu, Shixiang, and Poole, Ben. Categori-
cal reparameterization with gumbel-softmax. CoRR,
abs/1611.01144, 2017.

Kaiser, Lukasz and Bengio, Samy. Discrete autoencoders
for sequence models. CoRR, abs/1801.09797, 2018.

Kaiser, Lukasz, Bengio, Samy, Roy, Aurko, Vaswani,
Ashish, Parmar, Niki, Uszkoreit, Jakob, and Shazeer,
Noam. Fast decoding in sequence models using discrete
latent variables. In ICML, 2018.

Marcus, Mitchell P., Santorini, Beatrice, and
Marcinkiewicz, Mary Ann. Building a large annotated
corpus of english: The penn treebank. Computational
Linguistics, 19:313–330, 1993.

Mnih, Andriy and Gregor, Karol. Neural variational infer-
ence and learning in belief networks. 2014.

Mnih, Andriy and Rezende, Danilo J. Variational inference
for monte carlo objectives, 2016.

Oord, Aäron Van Den, Vinyals, Oriol, and Kavukcuoglu,
Koray. Neural discrete representation learning. In NIPS,
2017.

Radford, Alec. Improving language understanding by gen-
erative pre-training. 2018.

Roy, Aurko, Vaswani, Ashish, Neelakantan, Arvind, and
Parmar, Niki. Theory and experiments on vector quan-
tized autoencoders. CoRR, abs/1805.11063, 2018.

